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Abstract
We review a simple technique for evaluating the regularized vacuum energy
stemming from non-trivial boundary conditions and present results for the
Casimir energy of a massive fermionic field confined by a d + 1 dimensional
slab-bag and the effect of a uniform magnetic field on the vacuum energy of
confined massive bosonic and fermionic fields. New results concerning the
Casimir energy and the evaluation of the rate of quanta creation in κ-deformed
theories are also discussed.

PACS numbers: 11.10.−z, 12.20.−m, 12.39.Ba

1. Introduction

In quantum field theory under external conditions, the macroscopically observable zero-point
energy shift is defined as the regularized difference between the vacuum expectation value
of the Hamiltonian with and without the presence of the external conditions. Under certain
assumptions, external conditions can be approximated by boundary conditions and one-loop
calculations of the energy shift lead to the Casimir effect [1]—see [2] for the most recent review
on this subject. In the evaluation of the zero-point energies, some configurations which depend
on the nature of the particular quantum field (scalar, spinorial, etc.), the type of spacetime
manifold and its dimensionality, and the specific boundary condition imposed on the quantum
field on certain surfaces, may lead to rather complex spectra. The heart of the matter in these
calculations is the evaluation of the spectral sum that results at the one-loop level from the
shift of the zero-point energy. This evaluation requires regularization and renormalization, and
recipes for accomplishing this task range from the relatively simple cut-off method, employed
by Casimir himself [1], to a number of powerful and generalized zeta function techniques [3].

0305-4470/06/216725+08$30.00 © 2006 IOP Publishing Ltd Printed in the UK 6725

http://dx.doi.org/10.1088/0305-4470/39/21/S73
mailto:filadelf@if.ufrj.br
mailto:tort@if.ufrj.br
mailto:elizalde@ieec.uab.es
http://stacks.iop.org/JPhysA/39/6725


6726 F C Santos et al

Contour integral representations of spectral sums are a great improvement in the techniques
of evaluating zero-point energies and have been employed before [4]. A simple technique for
evaluating vacuum energy stemming from non-trivial boundary conditions based on Cauchy’s
integral formula and the Mittag–Leffler expansion theorem was proposed in [5, 6]. The method
was employed in a number of cases, in particular it was applied to calculate the Casimir energy
of a massive fermionic field confined in a d + 1-dimensional slab-bag [6] and to calculate the
effect of a uniform magnetic field on the vacuum energy of confined massive bosonic and
fermionic fields [7]. Recently this technique was applied to evaluate the Casimir energy of
κ-deformed theories under Dirichlet boundary onditions [8]. Here we review these cases and
extend the method to the evaluation of the rate of creation of quanta in κ-deformed theories.

2. A general formula for the regularized vacuum energy shift

For a field theory in d + 1 flat spacetime under boundary conditions imposed on two parallel
planes of area equal to Ld−1 which are kept at a fixed distance � from each other, and with
L � �, the non-regularized vacuum energy is given by

E0(d) = α(d)
Ld−1

2

∫ ∑
n

dd−1p⊥
(2π)d−1

�n (1)

where α(d) is a dimensionless factor that takes into account the internal degrees of freedom
and

�n =
√

p2
⊥ +

λ2
n

�2
+ m2 (2)

with p2
⊥ = p2

1 + p2
2 + p2

3 + · · · + p2
d−1 and m is the mass of an elementary excitation of the field

and the λn are the real roots of the equation determined by the boundary conditions. Consider
now ∑

n

�n = −
∮

�

dq

2π

∑
n

2q2

q2 + �2
n

(3)

which follows from Cauchy’s integral formula. The curve � is a Jordan curve on the complex
q-plane with Im q > 0 that we choose to be a semicircle with very large radius the diameter
of which is the entire real axis of the auxiliary variable q. Defining

z = �

√
q2 + p2

⊥ + m2, (4)

we can write ∑
n

�n = −
∮

�

dq

2π

�2q2

z

∑
n

2z

z2 + λ2
n

. (5)

This summation can be performed in the following way: let G(z) be a complex function of the
complex variable z symmetrical on the real axis and suppose its roots λn are simple, nonzero
and symmetrical with respect to the origin. Note that if z = 0 is a root of G we can divide
G by some suitable power eliminating this root from the set of roots without introducing new
singularities. Since the roots are symmetrical we can order them in such a way that λn = −λ−n

with n = ±1,±2, . . . . Defining the auxiliary function J (z) by

J (z) =
′∑
n

1

z − iλn

(6)

where the prime indicates the term n = 0 is to be omitted. This function is meromorphic with
simple poles at iλn and residua equal to one. Defining the function K(z) = G(iz), we see that
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the function K ′(z)/K(z) has simple poles at z = iλn with residua also equal to one. Due to
the symmetry of the roots we can write

J (z) = K ′(z)
K(z)

⇒ K ′(z)
K(z)

=
∑ 2z

z2 + λ2
n

. (7)

We can make use of this identity and of equation (3) to recast equation (1) into the form

E0(d) = −α(d)
Ld−1

2

∫
dd−1p⊥
(2π)d−1

∮
�

dq

2π
q

d ln[K(z)]

dq
. (8)

Integrating by parts we obtain

E0(d) = α(d)
Ld−1

2

∫
dd−1p⊥
(2π)d−1

∫
dq

2π
ln[K(z)]. (9)

At this point it is possible to simplify this last expression by decomposing the function K(z)

into two parts, namely K(z) = K1(z) + K2(z) where K1(z) contains all terms whose integrals
diverge when Re > 0 and K2(z) contains all terms whose integrals diverge when Re < 0; also
K1(z) = K2(−z). In this way the integral in equation (9) can be written as

I =
∫

�1

dq

2π
ln[K1(z)] +

∫
�1

dq

2π
ln

[
1 +

K2(z)

K1(z)

]
+

∫
�2

dq

2π
ln[K1(z)] +

∫
�2

dq

2π
ln

[
1 +

K1(z)

K2(z)

]
.

(10)

The regularized vacuum energy shift is then

E0(z) = α(d)
Ld−1

2

∫
ddp

(2π)d
ln

[
1 +

K1(z)

K2(z)

]
. (11)

Rewriting z =
√

p2 + m2 with p := x/� and integrating out the angular part, we obtain

E0(�, µ, d) = α(d)
Ld−1

2dπd/2�(d/2)�d

∫ ∞

0
dxxd−1 ln

[
1 +

K1(z)

K2(z)

]
. (12)

All along the real axis the function z does not change its sign and is a function of q and p⊥.
This approach to the evaluation of the Casimir energy can also be applied when the integrand is
a more complex function of �n. It is convenient to make the replacement z → ω =

√
x2 + µ2,

then we can write equation (12) in the alternative way

E0(�, µ, d) = α(d)Ld−1

2dπd/2�
(

d
2

)
�d

∫ ∞

µ

dω ω(ω2 − µ2)
d
2 −1 ln

[
1 +

K1(ω)

K2(ω)

]
. (13)

The function K(ω) can be inferred from the boundary conditions as the next examples show.

3. Quantum fields confined between parallel surfaces

Equation (12) is a general formula that can be applied to all cases of quantum fields confined
between two parallel surfaces on which we impose boundary conditions. A non-trivial example
is the one of the Casimir energy for a massive fermionic field confined in a d + 1-dimensional
slab-bag under MIT boundary conditions [6, 9]. If the surface of the bag is perpendicular to
the d-direction, MIT boundary conditions lead to the function

F(pd�) = µ sin(pd�) + pd� cos(pd�). (14)

Hence we can choose G(ω) as

G(ω) = µ
sin(ω)

ω
+ cos(ω). (15)



6728 F C Santos et al

Now we write

K(ω) = G(iω) = µ
sinh(ω)

ω
+ cosh(ω). (16)

It follows that

K1(ω) = 1

2

(
1 − µ

ω

)
e−ω (17)

and

K2(ω) = 1

2

(
1 +

µ

ω

)
eω. (18)

The regularized Casimir energy of the fermion field is

E0(�, µ, d) = − C(d)Ld−1

2d−1πd/2�
(

d
2

)
�d

∫ ∞

µ

dω ω(ω2 − µ2)
d
2 −1 ln

[
1 +

ω − µ

ω + µ
e−2ω

]
. (19)

Setting d = 3 we obtain the result given in [10]. We can explore this result, and lengthy
calculation shows that upon expanding the log function we end up with a convergent sum of
integrals that each can be expressed as a derivative of the Whittaker function Wνµ with respect
to an auxiliary variable λ at λ = 1. This is as far as we can go analytically. But it is possible
to consider and obtain analytical results in the massless limit and the very massive limit, see
[6] for details.

4. Confined bosonic and fermionic fields in a uniform magnetic field

The analytical regularization scheme can also be applied to massive bosonic and fermionic
fields in a uniform magnetic field perpendicular to the confining surfaces. Let us consider first
the case of a charged scalar field under Dirichlet boundary conditions. In this case we will
have

E0(�, µ, eB) = α

(
eB

2π

)
L2

2

∞∑
n=0

∫ ∞

0

dp3

2π
ln(1 − e−2z), (20)

where we have taken into account that the momenta associated with the unconstrained
directions are related to the Landau levels

p2
1 + p2

2 = eB(2n + 1) n = 0, 1, 2, 3, . . . . (21)

The factor eB/2π takes into account the degeneracy of the Landau levels. The function z

reads

z = z(p3, n) :=
√

�2p2
3 + eB�2(2n + 1) + µ2 (22)

where µ := m�. The integrand can be expanded, and the Casimir energy can be expressed as a
convergent infinite series of integrals that can be evaluated in terms of the Whittaker functions.
The final result reads

E0(�, µ, eB) = −eBL2

2π2�

√
eB�2 + µ2

∞∑
k=1

1

k
K1

(
2k

√
eB�2 + µ2

)

− eBL2

2π2�

∞∑
n=1

√
(2n + 1)eB�2 + µ2

∞∑
k=1

1

k
K1

(
2k

√
(2n + 1)eB�2 + µ2

)
. (23)

Note that this is an exact result. If eB � �2, the behaviour of the Bessel function of the third
kind leads us to write

E0(�, eB)

L2
≈ − (eBL2)5/4

π1/2�3
e−2

√
eBl2

(24)
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in agreement with [11]. For arbitrary µ and eB�2 equation (23) can be solved numerically,
see [7] for details.

For the case of a massive fermionic field, we replace the Dirichlet boundary conditions
by MIT bag model ones [9]. As in the case of the bosonic charged scalar field, analytical
regularization works fine even if the final steps are much more complex than those of the
previous case. We state the main results. Starting from equation (12) which now reads

E0(�, µ, eB) = −2 × 1

2

(
eBL2

2π

) ∞∑
n=0

∑
α∈{−1,1}

Inα (25)

where

Inα :=
∫ +∞

−∞

dp3

2π
ln

[
1 − z − µ

z + µ
e−2z

]
(26)

with

z = z(q, n, α) =
√

�2p2
3 + (2n + 1 − α)eB�2 + µ2 n = 0, 1, 2, 3, . . . (27)

after expanding the log and summing over α, we arrive at

E0(�, µ, eB) = −2
eBL2

2π2�

∞′∑
p=−1

∞∑
k=1

(−1)k+1

k
Ipk(Mp), (28)

where the prime means that the term corresponding to p = −1 must be multiplied by 1/2 and

Ipk(Mp) :=
∫ ∞

0
dx

[(
x2 + M2

p

)1/2
+ µ

]−k [(
x2 + M2

p

)1/2 − µ
]k

e−2k(x2+M2
p)1/2

(29)

with x = p3� and M2
p := 2(p + 1)eB�2 + µ2 for p = −1, 0, 1, 2, 3, . . . . These integrals are

non-trivial ones, but a numerical evaluation of equation (28) is feasible [7]. Two limiting
cases, however, can be solved analytically. The first one is limit µ → 0, and the other one is
the limit µ � 1. For the massless limit, we obtain

E0(�, µ → 0, eB) ≈ −eBL2

48�
eB�2 � 1 (30)

and for very massive one

E0(�, µ � 1, eB) ≈ − eBL2

32π3/2�

e−2µ

µ1/2
. (31)

For arbitrary values of µ and eB numerical analysis leads to very precise results, see [7] for
more details and numerical plots.

5. Vacuum energy shift in κ-deformed theory

A quantum field theory is κ-deformed when its spacetime symmetries are described by the
κ-deformed Poincaré algebra. These theories which may be important in some models of
the early universe lead in general to highly non-trivial dispersion relations. See [12] and
references therein. Consider for example scalar κ-deformed electrodynamics. The frequency
spectrum is given by

ω(p) = sinh−1

(
1

2κ

√
p2 + m2

)
. (32)
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The parameter κ is a measure of the departure from the Poincaré algebra. For Dirichlet
boundary conditions imposed on a certain direction, part of the frequency spectrum is
discretized and the vacuum energy shift is given by

E0(�, η,m) = L2
∫ ∑

n

d2p⊥
(2π)2

1

η
sinh−1(η�n) (33)

where as �n =
√

p2
⊥ + λ2

n

/
�2 + m2 and we have introduced the parameter η = 1/κ . Making

use of the identity
∑

n

sinh−1(η�n) = −
∮

dq

2π

∑
n

2q

q2 + �2
n

sinh−1(ηq) (34)

and integrating by parts

E0(�, η,m) = L2

2

∫ ∑
n

d2p⊥
(2π)3

∮
log[K(z)]√

1 − η2q2
. (35)

Making the decomposition K(z) = K1(z) + K2(z) and regularizing

E0(�, η,m) = L2
∫

d2p⊥
(2π)3

∫ 1/η

0

dq√
1 − η2q2

log

[
1 +

K1(z)

K2(z)

]
. (36)

After integrating the angular part we finally obtain

E0(�, η,m) = L2

(2π)2

∫ 1/η

0

dq√
1 − η2q2

I (q2) (37)

where

4�2
√

q2 + m2I (q2) = −2 Li2
(
e−2�

√
q2+m2)

�q2 − Li2
(
e−2�

√
q2+m2)

�m2

− Li2
(
e−2�

√
q2+m2)

�q2 −
√

q2 + m2 Li2
(
e−2�

√
q2+m2)

. (38)

For η → 0 and m → 0, we obtain the standard Casimir energy of a massless scalar field under
Dirichlet boundary conditions, For η 
= 0 and m = 0 we obtain

E0(�, η,m = 0) = − L2

4π2�3

∞∑
n=1

1

n2

∫ 1/η

0
dy

(
1 +

1

2n

)
e−2ny√

1 +
n

2y2�2
(39)

in agreement with [12].

6. Photon creation rate for κ-deformed theory

In a κ-deformed theory there is the possibility of quanta creation. The rate at which photons
are created is related to the quantity

S = i
η

2π

∑
n

ω2
n, (40)

and the vacuum decay will be proportional to exp(−S). The analytical regularization technique
can be applied to the evaluation of the sum of the squares of the frequencies which for massless
quanta reads

S = i
ηL

2π

∫
d2p⊥
(2π)2

∑
n

[
1

η
sinh−1

(
η

√
p2

⊥ + p2
n

)]2

. (41)
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We can write ∑
n

sinh−1
(
η

√
p2

⊥ + p2
n

) = −
∑

n

∮
dq

iπ

q[sin−1(ηq)]2

q2 + �2
n

(42)

then the photon creation rate can be rewritten as

S = − L2

16π4η

∫
d2p⊥

∮
dq

∑
n

2q2

q2 + �2
n

[sin−1(ηq)]2

q
. (43)

A lengthy and tricky calculation the details of which will be available elsewhere leads to

S = L2

4π3

∫
d2p⊥

∫ ∞

1/η

dq
dq√

1 − η2q2
log

[
1 +

K1(z)

K2(z)

]
. (44)

For Dirichlet boundary conditions this is

S = i
L2

4π3

∫
d2p⊥

∫ ∞

1/η

dq√
η2q2 − 1

log
(
1 − e−2�

√
p2

⊥+q2)
. (45)

We can expand the log and perform the integrals over p⊥, and after some additional
manipulations we end up with

S = i
L2

4π2�3

∞∑
n=1

1

n2

∫ ∞

�/η

dy√(
ny

�

)2 − 1

(
1 +

1

2n

)
e−2ny. (46)

If we take the limit η → 0 (no deformation) then S → 0. The same happens if we take the
limit � → ∞. In both limiting cases there is no photon creation. Equation (46) is in agreement
with [13].

7. Conclusions

In this brief review, we derived a general regularized expression for the evaluation of the
Casimir energy of a quantum field in a flat manifold under the influence of boundary conditions,
imposed on the field on flat surfaces, or topological conditions constraining the motion along
a particular spatial direction. We exemplified the main result with the case of a massive
fermionic quantum field confined by a planar d + 1 dimensional slab-bag with MIT boundary
conditions and confined bosonic and fermionic fields under a uniform magnetic field. We also
sketched the calculation of the vacuum energy and photon creation in κ-deformed theories.
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